
P r i e d i t is

I

Becoming Reactive By Concretization
Armand Prieditis md Bhaskar !anakiraman

Departmen)f Computer :ience
Unive-,ity of Califorxa

Davis. CA 95616

Abstract

One way to build a reactive system is to construct an action table
indexed by the current situation 01 stimulus. The action table de-
scribes what course of action to pursue for each situation 01 stim-
ulus. This paper describes an incremental approach to construct-
ing the action table through achieving goals with a hierarchical
search system. These hierarchies are generated with transforma-
tions called concrefizofiom. which add constrainu to a problem
and which can reduce the search space. The basic idea is that an
action for a state is looked up in the action table and executed
whenever the action table has an entry for that state; otherwise,
a path is found to the nearest (cost-wise in a graph with cost-
weighted arcs) state that has a mappring from a state in the next
highest hierarchy. For each state along the solution path, the suc-
cessor state in the path is cached in the action table entry for that
state. Without caching, the hierarchical search system can loga-
rithmically reduce search. When the table is complete the system
no longer searches: it simply reacts by proceeding to the state
listed in the table for each state. Since the cached information
is specific only to the nearest state in the next highest hierarchy
and not the goal, inter-goal transfer of reactivity is possible. To
illustrate our approach. we show how an implemented hierarchical
search system can completely reactive.

1 Introduction and Motivation
Intelligent interaction with the world can be viewed as
a combination of planning to achieve some goal and of
reaction to external stimuli in the course of executing
a plan. A pure planning system produces a c '1Dlete
plan of actions before executing it [J, 8, 3. j-:. In
contrast, a pure reactive system quickly selects and ex-
ecutes a single action based on an external stimulus [2,
1, 61. Planning systems appear to work well when the
predictability of the world is precisely captured in the
planner's actions, whereas reactive systems appear to
work well in worlds that an fraught with uncertainty
or unpredictability-where plans have little chance of
succeeding in their entirety, where the ability to plan to
completion is not a virtue. This paper describes how a
planning system can incrementally become more reac-
tive through interaction with its world, By becoming
more reactive, the system reduces its decision-making
time.

Previous approaches to building reactive systems
from non-reactive ones include compilation and leam-
ing from examples. Firby [5] and Rosenschein [13]
show how to compile high-level input descriptions of

actions and goals into reactive systems. Similarly,
Rosenschein and Kaelbling describe a technique to
compile constraint expressions into directly executable
circuits for a robotic control system [14]. Mitchell
uses Explanation-Based Learning to incrementally
leam the general conditions under which a particu-
lar action, which helps achieve a particular planning
goal, should be applied [lo]. If the conditions are
matched, the same action is applied-irrespective of
the system's current goal. The advantage of learning
over compiling is that examples focus on those parts
of the environment with which an intelligent agent ac-
tually interacts; only those actions that are relevant to
that interaction are compiled for reactivity.

The problem with the Explanation-Based Leaming
approach is that multiple goals can lead to multiple
action suggestions for the same state, which results in
deliberation as to which action to apply and therefore
less reactivity. This anomaly is commonly called
the wandering borrleneck problem in the machine
leaming literature: as a result of eliminating one time
bottleneck (e.g. time taken to react) another one
unexpectedly arises (e.g. time taken to decide how to
react). More precisely, in a problem with n problem-
solving states, each state can have as many as n
possible action suggestions since there can be as many
as n goals from which the action suggestions are
leamed. Moreover. to store such a network of states
and actions can require as much as O(nz log n) space
over n goals and n states, since O(1ogn) space is
requid to store each action suggestion. If n is an
exponential of problem size. then this approach is
generally not feasible.
This paper describes a technique to avoid the wan-

dering bottleneck problem by hierarchically organiz-
ing the state space such that at most one action is
learned for each state. As a side-benefit, this hierar-
chical organization reduces the worst-case space I
quirements by a factor of n.

The rest of this paper is organized as follows. S e i -
tion 2 defines the notion of a concretization and de-
rives several important properties of concretizations in

150

search. Section 3 describes our approach to becoming
reactive by concretization. Section 4 presents experi-
mental results of applying our approach. Finally, Sec-
tion 5 summarizes the conclusions of this work and
discusses a few promising avenues of future research.

2 Concretizations

Intuitively, a concretization of a problem is one that
has added constraints. The importance of these added
constraints is that they reduce the branching factor dur-
ing search. To formalize this intuitive notion requires
a definition of search. The definition that we will as-
sume is standard in the AI literature [ll]. A search
problem can be thought of as consisting of a graph of
nodes, which represent states, and directed arcs that
represent the application of an operator. These arcs
are typically weighted to represent the cost of apply-
ing the corresponding operator. Search can be thought
of as finding a finite path in the graph from a node rep-
resenting a given initial state to a node representing a
given goal state. The graph can be specified explicitly
or implicitly. In an explicit specification, the nodes
and arcs with associated costs might be supplied in
a table that includes every node in the graph and a
list of its successors and the costs of associated arcs.
This information might also be specified by a matrix
that stores the costs of associated arcs for every pair
of nodes (an infinite cost arc represents the absence of
an arc). In an implicit specification, only that portion
of the graph that is sufficient to include a goal node
is made explicit by applying operators using a search
algorithm such as A* [ll]. For example, in the Eight
Puzzle problem, the set of states consists of al l tile
permutations and operators only allow swapping the
blank with an adjacent tile (i.e. the cost function on a
pair of states returns 1 if one state is reachable from
the other by swapping the’blank with an adjacent tile,
and 00 otherwise). The goal state might specify that
the tiles are in a particular order.

More formally, let a search problem be a 3-tuple
(S, c). where S is a set of states describing situations
of the world; c : S x S -+ 3 is a positive cost function
that represents the cost of applying the corresponding
action from one state to another, and G C S is a set of
goal states. An instance of a search problem includes
a 2-tuple (i , g) where i E S is the initial state and
g E S is the goal state (for simplicity, we assume that
there is only one goal state). The objective is to find
a finite length finite cost path from i to 9.

A problem (S’,c’) is a concretization of another
problem (S,c) with respect to 4 : S’ -+ S iff 4
reduces cost: (Vs’, t’ E S ’) C (~ (S ’) , $(t’)) 5 c(s’, t ’) .

For example, Figure 1 shows a concretization of
the Towers of Hanoi problem. The original problem
is composed of operators that stack smaller disks on
top of larger disks from pin to pin; states are simply
disks stacked in increasing size on various pins. The
initial and goal states for a typical three disk instance
of the Towers of Hanoi problem are also shown in
the figure. If the disks are numbered from top to bot-
tom and then the operators are constrained such that
they never place an odd-numbered disk on an even-
numbered disk and vice versa, then this new problem
is concretization of the original problem with respect
to a mapping function that ignores disk parity. The
reason is because the cost is reduced: operators apply
more often in the original problem. Notice that any so-
lution in the concrete space is guaranteed to be a solu-
tion in the original space because the concretized prob-
lem is more restricted. Since the branching factor will
be lower for the concretized problem, solution gen-
eration will be more efficient (though slightly longer
solutions will generally result). This property, which
we call solution-soundness, is perhaps most powerful
when a problem can be concretized into one for which
an efficient solution generator exists. Any solution to
the concretized problem can then be directly mapped
onto a solution to the original problem. For example,
a Blocks World problem with three table locations can
be concretized into a Towers of Hanoi problem, which
has an associated divide-and-conquer algorithm, by as-
signing a “size” to each block (say, small to large for
each block on every stack, consistent in the initial and
goal states). Any solution to the corresponding Tow-
ers of Hanoi problem can be mapped onto a solution
to the original problem simply by ignoring size.

Tenenberg describes a similar property, which he
calls the downward solution property, in the context
of planning with a certain type of operator representa-
tion [16]. In his terminology, a transformed problem
has the downward solution property if every solution
in the transformed space can be mapped onto one for
the original problem. Solution soundness is a gener-
alization of the downward solution property since it
does not depend on specific operator representations.

Despite the solution-soundness property of con-
cretizations, a solvable problem in the original space

151

IO 1

Figure 4 Becoming Reactive Through Interaction with the World

only those states that are most frequently encountered
or apply leaming techniques to reduce table size. In
particular, we are currently investigating applying our
ideas to a less artificial problem (a robot routing task),
which includes explicitly specified operators with in-
puts from external sensors such as in a robot routing
task. It might be possible to apply Explanation-Based
or inductive learning to learn the class of states hat
lead to the nearest state in the next highest hierarchy.

Another problem is that constructing concretization
hierarchies is generally a difficult problem. However.
a catalog of problem transformations such as those of
Absolver I1 [121 might prove helpful. Another method
might be to use clustering algorithms to group simi-
lar states into equivalence classes. Problem-solving
performance with morc meaningful groupings-thos
that exploit the structure of the search graph and sim-
ilarity of states-should be improved over the results
we obtained with random hierarchical groupings.

Ultimately, we would like to test our ideas in a
dynamic world where an intelligent agent’s plans to
achieve goals are continually thwarted by unforeseen
events to which the Jgent has to react immediately,
recover, and then F:oceed towards achieving the goal.
We believe that a herarchical learning system of the
sort described here may be especially suited for such
worlds. We are currently modeling a dynamic world

*

and testing this hypothesis.

References

[13 P. Agre and D. Chapman. Pengi: An implementa-
tion of a theory of &vity. In Proceedings A4 : -
87, pages 268-272. kattle. WA, 1987. Amen
Association for Aniricial Intelligence.

121 R.A. Brooks. A robust layered control system tor
a mobile robot. IEEE Journal of Robotics and
Automation. 2(1), March 1986.

[3] D. Chapman. Planning for conjunctive goals.
Artificial Intelligence, 32(3):333-378, 1987.

[41 R. Fikes. P. Hart, and N. J. Nilsson. Learning and
executing generalized robot plans. Artificial Intel-
ligence, 3(4):251-288, 1972. Also in Readings in
Artificial Intelligence, Webber, B. L. and Nilsson,
N. J., (Eds.).

[5] J. Firby. Adaptive Execution in Complex Dynamic
Wor&. PhD thesis, Yale University, 1989.

[6] L Kaelbling. An architecture for intelligent reac-
tive systems. In M. Georgeff and A. Lansky, ed-
itors. Reasoning about Actions and Plans: Pro-
ceedings of the I986 Workshop. Morgan Kauf-
mann. 1986.

152

[7] L. Kleinrock and F Kamoun. Hierarchical routing
for large networks. Computer Nenuorks, 1 : 155-
174, 1977.

[SI R. Korf. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence,

[9] R. Korf. Planning as search: A quantitative ap-
preach. Artificial Intelligence. 33(1):65-88. 1987.

Proceedings of the Eighth National Conference
on Artificial Intelligence, Boston, MA, July 1990.
American Association for Artificial Intelligence.

[111 N. J. Nilsson. Principles of Artificial Intelligence.
Morgan Kauhann, Palo Alto, CA, 1980.

[121 A. Prieditis. Machine discovery of effective ad-

27(2) :97- 109, 1985.

,

I
[101 T. Mitchell. Becoming increasingly reactive. In

I

I
I

missible heuristics. Machine Learning, October
1992. To Appear.

[13] S. Rosenschein. Formal theories of knowledge
in ai and robotics. New Generation Computing,

[141 S. Rosenschein and L. Kaelbling. The synthesis of
digital machines with provable epistemic proper-
ties. In Theoretical Aspects of Rearoning about
Knowledge, pages 83-98, San Mateo, CA, 1988.
Morgan Kaufmann.

[151 E. Sacerdoti. Planning in a hierarchy of abstrac-
tion spaces. Artificial Intelligence, 5 : 115-135,
1974.

[161 J. Tenenberg. Abstraction in Planning. PhD thesis,
University of Rochester, 1988.

(3):345-357, 1985.

153

